Evaluation

Security and Integrity of a Distributed File Storage in a Virtual Environment

Gaspare Sala¹ Daniele Sgandurra¹ Fabrizio Baiardi²

¹Department of Computer Science, University of Pisa, Italy ²Polo G. Marconi - La Spezia, University of Pisa, Italy

SISW Workskop, 2007

Outline

- Introduction
 - Secure File Sharing
 - Requirements
- Proposed Solution: VSFS
 - Overall Architecture
 - Threat Model
 - Implementation
- 3 Evaluation
 - Performance
- 4 Conclusion
 - Results and Future Works

Introduction

Applications with Distinct Trust Levels

- Secure file sharing among applications with distinct trust levels:
 - Web Services.
 - P2P applications.
- Users share their data only if they receive some assurance about the:
 - Description
 - Enforcement

of the security policy that controls the sharing.

Introduction

ĕo

MAC/MLS Policies

To enable secure file sharing, we need an architecture that:

- Describes and enforces in a centralized way a security policy to handle file requests.
- Forces users to respect their roles when accessing files.
- Supports a large set of MAC or DAC policies.

Introduction

0

Distributed File System

- Client-server architecture to implement a distributed file system.
- Exports to the clients one or more directories of the shared file system.
- Applications access transparently remote shared files.
- Limitations of current solutions: untrusted client user credentials.

Virtualization Technology

- Software emulation of the hardware architecture: Virtual Machines (VMs).
- Benefits:
 - Confinement among the VMs.
 - Server consolidation: better resource utilization.
 - Centralized management: easier administration.
- Widespread usage.

Overall Architecture

Type I/II VMM

Virtual environment Secure File System

We propose a software architecture for secure file sharing composed of:

- A network of multiple interconnected virtual machines.
- Three disjoint sets of VMs:
 - Application-VMs (APP-VMs): each APP-VM runs some application processes.
 - File System-VMs (FS-VMs): export file systems shared among the application processes.
 - Administrative-VMs (A-VMs): one for each node, to set up and manage VMs for assurance, routing and administrative tasks.

Overall Architecture

Architecture

Application VMs (APP-VMs)

- Run application processes.
- Are labeled with a security context.

Overall Architecture

File System VMs (FS-VMs)

- Export file systems.
- Implement MAC policies to control file sharing.

Administrative VMs (A-VMs)

- Protect FS-VM integrity against attacks.
- Implement anti-spoofing techniques to authenticate each file request before routing it.

Threat Model

- VMMs and A-VMs belong to the Trusted Computing Base.
- A malicious application may attacks other ones through shared files.
 - Invalidate data integrity.
 - Contamination through viruses.
- APP-VMs are untrusted: spoofed packets.
- Communications among the physical nodes cannot be forged or spoofed.
- Example: Service Provider using VMs.

Current Prototype

Patch to FS-VM Linux Kernel.

•000

- The prototype is based on Xen.
- VSFS exploits NFSv3 service to handle file requests.
- FS-VMs run Security-Enhanced Linux (SELinux):
 - to support DAC/MAC policies;
 - 2 to enforce the security policy in a centralized way.

NFS Subject

- Changes to SELinux labeling and access rules:
 - new subject corresponding to the NFS client;
 - definition of all the operations it can invoke.
 - the NFS server acts on behalf of NFS clients.
- VSFS:
 - Defines a distinct protection domain for each NFS client.
 - 2 Dynamically pairs the NFS server process with the security context of the NFS client.
- Principle of least privilege.

NFS Request Flow

Assurance

- Virtual Machine Introspection: Standford University.
 - Visibility: access FS-VM's state from a lower level.
 - Robustness: protects FS-VM integrity from an A-VM.
- Anti-spoofing on the Xen virtual bridge:
 - Static IP addresses bound to virtual interfaces.
- The AVM can freeze the execution of a VM.

Performance

IOzone

- We used the IOzone Filesystem Benchmark to run NFS performance tests.
 - Read/Write test.
- Four cases depending on whether:
 - APP-VM and FS-VM are on the same or different node.
 - Security policy is enforced or disabled.

000

Performance

IOzone Read Performance

Overhead is negligible

IOzone Write Performance

Overhead is negligible

Results and Future Works

Limitations

Current limitations of the prototype:

- No file system encryption.
- Assurance is limited to FS-VMs:
 - attacks to APP-VMs are possible.
- Policy granularity is at the VM level.
- Security policy is static.

Results and Future Works

Results

- Enforcement of MAC policies on a shared storage:
 - to protect files accessed by applications with distinct trust levels.
- Ability of securely identifying each APP-VM:
 - reliable association of a security context to an APP-VM according to its trust level.
- High assurance of the FS-VM integrity.
- Negligible overhead.

Future Works

- Tainting: track data propagation among users and applications.
- File System encryption.
- Finer-grained security policy: user-ID and NFS client-ID.
 - Protection domain is a subset of the VM's domain.
 - Client side authentication.
- Master A-VM: controls and configures the whole network.
 - Ex.: VM migration.
- Support for flexible security policies and MLS.

